Gradient method

Results: 299



#Item
131Numerical linear algebra / Singular value decomposition / Matrix theory / Functional analysis / Preconditioner / Moore–Penrose pseudoinverse / Kernel / Conjugate gradient method / Orthogonal matrix / Algebra / Linear algebra / Mathematics

DownloadedtoRedistribution subject to SIAM license or copyright; see http://www.siam.org/journals/ojsa.php SIAM J. SCI. COMPUT. Vol. 36, No. 2, pp. C95–C118 c 2014 Society for Industrial an

Add to Reading List

Source URL: www.stat.berkeley.edu

Language: English - Date: 2014-06-25 12:34:56
132Operations research / Gradient descent / Gradient method / Penalty method / Conjugate gradient method / Constraint optimization / PROPT / Multidisciplinary design optimization / Numerical analysis / Numerical linear algebra / Mathematical optimization

Optimization Algorithms, Implementations

Add to Reading List

Source URL: www.cse.ust.hk

Language: English - Date: 2009-09-15 12:00:50
133Physics / Aerodynamics / Piping / Chemical engineering / Continuum mechanics / Reynolds number / Viscosity / No-slip condition / Multiphase particle-in-cell method / Fluid dynamics / Fluid mechanics / Dynamics

CHAM Limited Pioneering CFD Software for Education & Industry CONCENTRATION DISTRIBUTION AND PRESSURE GRADIENT OF PARTICLE-WATER SLURRY FLOWS IN HORIZONTAL PIPES by

Add to Reading List

Source URL: www.cham.co.uk

Language: English - Date: 2013-04-15 06:29:28
134Matrix theory / Numerical linear algebra / Mathematical optimization / Abstract algebra / Matrix / Conjugate gradient method / Vector space / Invertible matrix / Lagrange multiplier / Algebra / Linear algebra / Mathematics

XIII International Conference on Input-Output Techniques University of Macerata, Italy August 21-25th, 2000. Vittorio Nicolardi (University of Bari – Faculty of Economics)

Add to Reading List

Source URL: www.iioa.org

Language: English - Date: 2007-10-09 05:36:15
135Applied mathematics / Gradient descent / Linear programming / Quasi-Newton method / Descent direction / W0 / Least squares / Numerical analysis / Mathematical optimization / Operations research

Ch.7 Nonlinear optimization [Book, Chap. 5] To appreciate the vast difference between linear optimization and nonlinear optimization, consider the relation y = w0 + L

Add to Reading List

Source URL: www.ocgy.ubc.ca

Language: English - Date: 2013-10-28 03:07:27
136Numerical linear algebra / Convex optimization / Mathematical optimization / Subgradient method / Gradient / Mathematical analysis / Numerical analysis / Mathematics

Case Study 1: Estimating Click Probabilities SGD  cont’d   AdaGrad   Machine  Learning  for  Big  Data       CSE547/STAT548,  University  of  Washington  

Add to Reading List

Source URL: courses.cs.washington.edu

Language: English - Date: 2015-04-02 14:33:26
137Nelder–Mead method / Mathematical optimization / Conjugate gradient method / Gradient descent / Simplex / Numerical analysis / Operations research / Mathematics

15 Optimization Once you’ve gathered your data, selected a representation to work with, chosen a framework for function approximation, specified an error metric, and expressed your prior beliefs about the model, then

Add to Reading List

Source URL: fab.cba.mit.edu

Language: English - Date: 2014-04-29 10:51:08
138Derivation of the conjugate gradient method / Numerical linear algebra / Classical orthogonal polynomials / Numerical analysis / Mathematics / Physics

Short Math Guide for LATEX Michael Downes American Mathematical Society Version[removed]), currently available at http://www.ams.org/tex/short-math-guide.html 1. Introduction This is a concise summary of recommen

Add to Reading List

Source URL: www.tex.uniyar.ac.ru

Language: English - Date: 2012-04-06 06:48:45
139Stochastic optimization / Operations research / Stochastic gradient descent / Stochastic approximation / Gradient descent / Gradient method / Subgradient method / Convex optimization / Numerical analysis / Mathematical optimization / Mathematical analysis

Learning with stochastic proximal gradient Lorenzo Rosasco ∗ DIBRIS, Universit`a di Genova Via Dodecaneso, [removed]Genova, Italy

Add to Reading List

Source URL: www.opt-ml.org

Language: English - Date: 2014-12-10 11:28:36
140Stochastic optimization / Quasi-Newton method / Gradient descent / Stochastic gradient descent / BFGS method / Limited-memory BFGS / Stochastic approximation / Hessian matrix / Perceptron / Numerical analysis / Mathematical optimization / Mathematical analysis

Fast large-scale optimization by unifying stochastic gradient and quasi-Newton methods Jascha Sohl-Dickstein, Ben Poole, Surya Ganguli Stanford University {jascha,benpoole,sganguli}@stanford.edu

Add to Reading List

Source URL: www.opt-ml.org

Language: English - Date: 2014-12-13 10:45:07
UPDATE